Problem 1.28

Discuss the existence and uniqueness of solutions to the initial-value problem $y^{\prime}=\sqrt{1-y^{2}}$ $[y(0)=a$], for all initial values a. Is there a unique solution if $a=1$?

Solution

The square root function on the right side exists and is continuous for any neighborhood of x and y when $-1 \leq y \leq 1$. However, the derivative of it with respect to y,

$$
\frac{\partial}{\partial y} \sqrt{1-y^{2}}=\frac{1}{2}\left(1-y^{2}\right)^{-1 / 2}(-2 y)=-\frac{y}{\sqrt{1-y^{2}}},
$$

is not continuous when y is in the neighborhood of 1 or -1 . The conditions of the existence and uniqueness theorem are not satisfied here, so uniqueness is not guaranteed. Consequently, for the initial-value problem, $y^{\prime}=\sqrt{1-y^{2}}[y(0)=1]$, there may be more than one solution. Indeed, by inspection we see that $y(x)=1$ satisfies it and by separation of variables a second solution can be obtained.

$$
\frac{d y}{\sqrt{1-y^{2}}}=d x
$$

Integrate both sides.

$$
\arcsin y=x+C
$$

Take the sine of both sides.

$$
y(x)=\sin (x+C)
$$

Determine the constant of integration by using the initial condition.

$$
y(0)=\sin (C)=1 \quad \rightarrow \quad C=\frac{\pi}{2}
$$

Hence,

$$
y(x)=\sin \left(x+\frac{\pi}{2}\right)
$$

is a second solution. The discussion is summarized below.
$\left\{\begin{array}{l}a^{2}>1 \quad \text { No solution to the IVP exists because the square root is undefined } \\ a^{2}=1 \quad \text { A solution to the IVP exists but is not unique because the derivative is not continuous } \\ a^{2}<1 \quad \text { A solution to the IVP exists and is unique }\end{array}\right.$

